Affine varieties and coordinate rings

Def: An <u>affine variety</u> is an irreducible affine algebraic set. So $\begin{cases} affine varieties \\ in A^{n} \end{cases}$ $\begin{cases} prime ideals \\ in k[\pi_1,...,\pi_n] \end{cases}$

Functions on varieties

(or alg. set) let $V \subseteq A^{n}$ be a variety. Let $\widehat{F}(V, k)$ be the set of all functions $V \rightarrow k$. $\widehat{F}(v, k)$ has a natural ring structure.

Def:
$$f \in \mathcal{F}(V, k)$$
 is a polynomial function or regular function
on V if there is some $F \in k[x_1, \dots, x_n]$ s.t. $f = F|_{V}$.

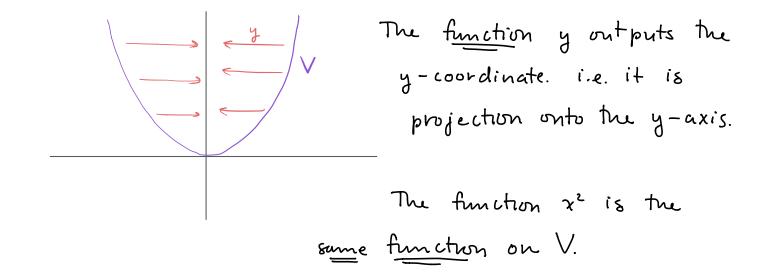
i.e.
$$\forall (a_{1},...,a_{n}) \in V, F(a_{1},...,a_{n}) = f(a_{1},...,a_{n}),$$

Easy exercise: The set of regular functions on V is a subring of F(V, k).

Def: The ring of regular functions on V is called the coordinate ring of V. It's denoted $\Gamma(V)$.

 $E_X: I.) \ \Gamma(A^m) = k[x_1, ..., x_n].$

2.) let $\bigvee = \bigvee (y - x^2) = \{(t, t^2) | t \in k\}$



3.) Consider $V(\pi y - 1) \subseteq \mathbb{A}^2$. Is $\frac{1}{y}$ regular?

 $xy = 1 \implies x = \frac{1}{y}$ so x and $\frac{1}{y}$ are the same function on V(xy - 1), so $\frac{1}{y}$ is negalar.

In general, if $V \subseteq A^{h}$ is a variety, we have a restriction map $k[x_1, ..., x_n] \rightarrow F(V)$

whose kernel is precisely the functions that vanish on V, i.e. I(V). So we have...

Prop Def:
$$\Gamma(V) \stackrel{\sim}{=} \frac{k[x_1, \dots, x_n]}{I(V)}$$

<u>Remark</u>: $\Gamma(V)$ is ring-finite over k, and if V is a variety, since I(V) is prime, $\Gamma(V)$ is an integral domain.

We can define the function $\Gamma(V) \rightarrow \Gamma(W)$ to be the restriction map $\overline{f} \mapsto \overline{f}|_{W}$, where $\overline{f} \in k^{(x_1, \dots, x_n)} I(v)$, $f \in k^{(x_1, \dots, x_n)} = \mathbb{R}$

$$\overline{f}$$
 is in the kernel $\Leftrightarrow \overline{f}$ vanishes on $W \Leftrightarrow \overline{f} \in I_v(W)$
the ideal in
 $\Gamma(V)$ corr. to W
So $\Gamma(W) \stackrel{\sim}{=} \frac{\Gamma(V)}{I_v(W)} \stackrel{\sim}{=} \frac{(R_I(V))}{(I(W))} \frac{I(W)}{(I(V))}$

Ex: Going back to
$$V = V(xy-1) \subseteq A^2$$

As we saw, $y = \frac{1}{x}$ in $\Gamma(V)$, so
 $\Gamma(V) = \frac{k[x,y]}{(xy-1)} \stackrel{\text{def}}{=} k[x,\frac{1}{x}], i-e.$
Laurent polynomials.